
VVVV / Projection / Kinect

VVVV / Projection / Kinect Omniversity of Manchester

VVVV / Projection / Kinect

Author: Elliot Woods
Design: Hwa Young Jung
First Edition, November 2012. Version 1.0
Produced by Manchester Digital Laboratory / Omniversity of Manchester Press.
http://omniversity.madlab.org.uk/
©2012 Elliot Woods

Table of Contents

0. Basic Principles

1. IOBox

2. IOBox II

3. IOBox III

4. DirectX

5. Transforms

6. Spreads

7. Animation

8. Spreads II

9. Transforms II

10. DirectX II

11. Shaders

12. Audio response

... page 6

.. page 12

.. page 14

.. page 16

... page 18

.. page 20

.. page 22

.. page 28

.. page 32

... page 36

... page 40

... page 42

.. page 46

http://omniversity.madlab.org.uk/

page 4

VVVV / Projection / Kinect

page 5

Omniversity of Manchester

mouse

left mouse click

middle mouse click

right mouse click

scroll wheel

double click right

node

pin

concept

keystroke

Introduction

This document serves as a reference whilst we work through the examples in the class, and to use as a
reference when later reviewing the examples.

The style of this document is terse and accurate, and therefore (as of March 2012) not designed in itself to act
as a standalone textbook.

alt

patch

pin

 node

Legend

page 6

VVVV / Projection / Kinect

page 7

Omniversity of Manchester

When we open VVVV, we get a blank square.

This blank square is a view of a new blank VVVV
document, which is called a Patch.

Patches defi ne ‘programs’ in VVVV. A patch can
perform all sorts of tasks. It can act on its own,
or can perform a specifi c function within a bigger
patch. When one patch is nested within another, it

is called a Subpatch.

The Graph is a term given to everything that VVVV
is thinking about. This word can commonly be used
interchangeable with the ‘Patch’, but the Graph is
also a more general term which incorporates all
running patches and subpatches.

Patches are made entirely out of Nodes and Links.

We denote a Node like this: Node name .

Almost all of the interface for VVVV is handled by
nodes, and therefore there are no toolbars, menu
bars, etc. to start with. The main exception to this is

the Main Menu.

 0. Basic Principles
0.0 The patch

in an empty space in the patch window.

This will bring up the NodeBrowser which you can use to create new nodes.

If you start typing, the NodeBrowser will begin searching for new nodes that you can create.

Use on the keyboard to select different nodes within the list. Use the scroll on the mouse to

scroll the list. Press on the keyboard or click on an item in the list to create the node.

 on the text box at the top of the NodeBrowser, to browse for nodes by category.

0.2 Scrolling
There are 2 main ways to scroll around the patch in VVVV. You can either:

1. Drag right mouse button
 Move your mouse over an empty area of the patch, hold down your right mouse button and then
 start moving your mouse. Release the mouse to stop scrolling.

 You will notice that the whole patch will move with respect to the window. This is the most
 common form of scrolling. But WARNING! Be careful not to right click on any links in the patch.
 It’s common for beginners to scroll like this with their mouse over a link. Right clicking on a link
 deletes it!

2. With the scroll wheel
 Safer for busy patches (for the link-deleting reason described above). You can scroll up/down
 using . You can scroll left/right with + and using the scroll wheel. You can scroll
 super-quick using +

0.3 Main Menu
The main menu contains a set of functions. All except a couple of which can be accessed without using the
main menu.

To open the main menu, move your mouse over an empty area of the patch and click the middle mouse

button . If you dont have a middle mouse button, then use +

The main menu performs common tasks such as Open, Close, Save, Quit, Copy, Paste, etc. as well as some
VVVV specifi c functions which may help you debug your patch, direct you to help, speed up your patch.

0.1 Creating nodes

↑ ↓

Enter

Alt

Space

Ctrl

↓

↑

page 8

VVVV / Projection / Kinect

page 9

Omniversity of Manchester

0.4 IOBoxes

Enter

An IOBox is a special node. It is the most basic method for inputting data into VVVV (input), and for seeing
the data for ourselves (output). We can only edit data inside an IOBox if it has nothing connected to its input.

We can create an IOBox by double right clicking on the patch.

Try changing the value by double clicking on it, and entering a value manually, then press

0.5 Pins
Nodes need a way of communicating with other nodes.

The ‘cable’ that connects 2 nodes together is called a Link, and the ‘socket’ where that cable connects to the
node is called a Pin.

In this documentation, we demonstrate a pin with the following style: style. This could denote either a specific
pin such as + (Value) node’s Input 1, or more casually refer to a general pin, such as the input of an IOBox .
Output pins are on the bottom of the nodes, Input pins are on the top of the nodes.

An input can only be connected to 1 other node’s output at any time.

An output can be connected to many other nodes’ input at any time.

Move your mouse over a pin to see what value it has (works for both inputs and outputs).

0.6 Links
As mentioned before, a connection between 2 nodes is called a ‘Link’.

A link is made between an input pin (on the top of a node) and an output pin (the bottom of another node).

We can think of the data flowing from the ouput of one node, down the link, and into the input pin of the
‘downstream’ node.

To make a link, first select a pin to start making the connection by left clicking on the pin. You must
remember to click (and not to drag, especially if you’re used to Max/MSP style linking).

Once you have clicked once and made sure to release the mouse button , you are now ready to select
the target pin for your link. Pins that you are allowed to connect to (i.e pins that you can make a meaningful
connection with) are highlighted by becoming graphically larger on the screen. Click on a target pin to
complete the link.

To delete a link. Right click on it, or select it by left clicking on it, and hit

↑

Delete

Ctrl Y

Data sent via a link is sent from an output pin and received on an input pin. Input pins are the pins across
the top of a node.

Input pins have different names depending on their function. For basic nodes, the main input is called Input.
Put data in there and get a result on the output.

There may also be other input pins also called “Input”, e.g. a + (Value) node has by default 2 inputs, Input 1,
Input 2 which are the 2 numbers to be added together.

Sometimes it’s appropriate for the input pins to have different names, e.g. a HSL (Color, Join) node has 4 inputs:
Hue, Saturation, Lightness, Alpha. These are joined together into 1 colour value on the Output.

Input pins can generally store values. If you connect to an input pin, then disconnect, it will store the last
value given to it. You can also edit the value of an input pin without connecting anything to it

Sometimes the input pins are attributes for how that node should behave, e.g. A Renderer (EX9) node has a
Fullscreen pin, which allows you to set that renderer’s window to be fullscreen.

0.8 Links again
1 output can be linked to several inputs
1 input can only be linked to 1 output

Links can be created by either first select input then output, or vice versa. Both times, using

If you want to make a link from 1 output to multiple inputs, then you can either create them all one by one
using , or you can create them more quickly by starting to create the link from the output pin using the
right mouse button . Now every time you an input to make a connection, you will still have the output
selected and be free to create a new connection to another input using 1 more without reselecting the
output. Right click in blank space to get rid of the link you are creating..

If you start to make a link by accident, right click in a blank area to clear.

A common error is to ‘miss’ when trying to make a connection (this is either through being inaccurate with the
mouse, or by selecting ^an incompatible to connect to). This means that no link has been made, but you still
likely have the link attached to your mouse. Be careful of this, make sure the link is created properly and still
exists after you move the mouse away! Otherwise try again.

To ‘smarten up’ your links follow these steps:

1.	 Select them (either lasso a few of them at once by dragging out a selection box around them, or 	
	 select them one by one with left mouse button).
2.	 Press until you get the style of your choice (Right angles, Curves, Direct)

0.7 Input pins

page 10

VVVV / Projection / Kinect

page 11

Omniversity of Manchester

0.9 Help and tutorials
There are some great tutorials to help you out if you’re stuck / get curious:

•	 If you want help about a node, select it with and press
•	 If you want to see examples of what you can do with VVVV, check the girlpower folder within the 	
	 VVVV directory for sample patches
•	 Make sure to make a user on the www.vvvv.org website, and post your queries in the forum
•	 Check out West’s VVVV tutorial videos on YouTube

F1

www.vvvv.org website
http://www.youtube.com/watch?v=xPK59gSXs80

page 12

VVVV / Projection / Kinect

page 13

Omniversity of Manchester

Open the example patch for this chapter.
The most basic input / output mechanism in VVVV
is the IOBox .

There are different IOBoxes for different types of
data (Value, String, Color, Enum, Node).

The most basic type of data is called a Value, which
means a real number (note for programmers: this is
currently represented by a double precision fl oating
point value).

IOBoxes perform multiple roles:

1. Give opportunities for user input/output
2. Holds data when no input is connected
3. Perform access to inputs/outputs of
 subpatches (more on that later!)

1.1 Drag right mouse button
Move your mouse cursor over the IOBox without
pressing any buttons. Now hold down the right
mouse button and drag up/down to change the
value.

To move through values more slowly (more
accuracy) hold down either or whilst
dragging the right mouse button:

e.g. + . Hold down both to get even more accuracy + +

To move through values more quickly hold down + or + whilst dragging the right
mouse button. Hold for maximum speed.

In VVVV, generally we use the right mouse button for interacting with Values and other datatypes. We use
the left mouse button to change the patch itself. You best get comfortable with that right mouse button
because you’ll be using it a lot!

1.2 Double left click
The alternative way of changing the value is to double click on the IOBox to change the value by entering
it with the keyboard.

1. IOBox
1.0 IOBox

1.3 Editing using input pin
In general, we can edit the value of an input pin by right clicking on it . We can also use right click drag An
IOBox is a very special type of node where the contents can effect the input pin. No other node can affect its
input pin.

1.4 When connected
When an input is connected, then you cannot edit that input. Since altering the value of an IOBox would alter
the value of an input, you cannot interact directly with the value of an IOBox when an input is attached.

1.5 Spreaded IOBoxes
An IOBox can carry more than one Value. VVVV has a special way of dealing with several values at the same
time, this is called a Spread.

Here we have an IOBox which works with 4 values. This is sometimes called a ‘4D vector’ IOBox

1.6 Shortcut to create IOBox
Since you’ll be making these all the time, VVVV sensibly provides you with a shortcut to create a new IOBox

To do this double right click in an empty area of the patch.

This will give you a simple IOBox (Value advanced)

A menu will also appear allowing you to create different types of IOBox

↓

↓

Ctrl

Ctrl

Shift

Ctrl

Ctrl
Ctrl

Shift
Shift

Alt
Alt

Alt

Shift ↓

↓

page 14

VVVV / Projection / Kinect

page 15

Omniversity of Manchester

Open the example patch for this chapter.
The IOBox (Value Advanced) supports many different
ways of dealing with values.

Try interacting with these IOBox’s. Remember to
interact you use the right mouse button .

2.1 Toggle
A Toggle is a very simple message that can be sent
around the patch. It generally switches something
on or off downstream like ‘enable this’, ‘hold this
value’ or ‘pause this’.

VVVV thinks of a toggle as a Value of either 0 or 1.
0 denotes low or ‘off ’, 1 denotes high or ‘on’.

2.2 Bang
A Bang is another very simple message that can be
sent around the patch. It generally tells something
downstream to ‘do something’, like ‘emit particles’
or ‘shutdown computer’.

The message only exists for an instance, then
disappears. It’s like poking someone on the
shoulder. A bang is ‘instantaneous’.

WARNING!
If you’re familiar with bangs from Max/MSP, then
you’re likely NOT going to be very familiar with

bangs in VVVV. Watch out! They work very differently in VVVV!

A bang is also represented by a Value. The substance of that Value is either 0 or 1 for a bang. The Value is 1 to
denote a bang being sent. A bang lasts for 1 frame, after which the value returns back down to 0.

2.3 Bangs and Toggles example
Let’s try out Bangs and Toggles! These guys are the best of friends.
Open a new patch with + or use to open the Main Menu and select ‘new patch’’

Let’s create: (from top to bottom)

• 1 IOBox Toggle + 1 IOBox Bang*
• 1 Stopwatch (Animation)

• 1 IOBox value (hold on a sec, just create the fi rst 2 rows)

2. IOBox II
2.0 IOBox II

* To create a toggle IOBox, double right click and select ‘Toggle’ from the menu. Do the same for bang, but
this time select ‘Bang’ of course.

To create the bottom IOBox, let’s use another shortcut. First on the Output pin of Stopwatch . Move your
mouse away and then click the middle mouse button , this should automatically create a new connected
 IOBox for you of the correct kind. on the IOBox again to give it a label.

Now connect everything up. Connect the toggle you created to the ‘Run’ input and connect the bang to the
‘Reset’ pin..

We can also give names to IOBox’s very easily. Since they are now connected to the Stopwatch node’s Run,
Reset and Output pins respectively, we can copy these names into the IOBox’s. To do this, we middle click on
the 3 IOBox’s one by one.

Now try to interact with the ‘Run’ and ‘Reset’ boxes that you have created using right click .
Right clicking on a Toggle switches the value. Right clicking on a Bang sends a bang (switches the value high
for 1 frame).

2.4 Color
A Color is a datatype within VVVV.

Colours have obvious graphical uses such as determining the colour of objects that you want to render.

There are many nodes that allow you deal with colours directly, or convert them to other data types.

2.5 String
A String is another datatype within VVVV. It allows you to deal with text.

VVVV works with UTF-8 encoded strings (international text) as well as ASCI strings (simple latin english
text) + multi-line text.

Strings can also be used for dealing with URLs, Filenames, Directory names and other text-based assets. In
these cases VVVV has some helpful ways of dealing with strings to make life more lovely.

2.6 Enum
An Enum is a perculiar datatype in VVVV. It is in general the only data type to learn something from
downstream. Almost all other types only send data downstream, and do not feed back any data upstream (this
is quite fundamental to how VVVV works).

An enum is an enumeration of options. The node which an enum is connected to will tell it which options are
available. An example of a node with an enum input is Fill (EX9.Renderstate) .
Create this node, and try and change the right hand Input pin. You will be given a list of options for fi ll style
(e.g. Wireframe, Solid, Point).

Ctrl P

page 16

VVVV / Projection / Kinect

page 17

Omniversity of Manchester

Ctrl I

Open a new blank patch.
Let’s create a set of sliders.
Create a new IOBox with .

There are 2 pins on the IOBox at present:

• Y Input Value

• Y Output Value

However, there are many hidden pins on the IOBox
that can confi gure it in all sorts of ways. To see
these hidden pins, we need to use the Inspektor .

To open the Inspektor:

1. Select the IOBox with a single (it should now be highlighted. To deselect an object,
 in an empty area of the patch).
2. Press + . This should bring up the Inspektor window.

The Inspektor will show you hidden properties about whatever you have selected.

The pins shown in the Inspektor are split into 3 areas:

• Confi g pins - These pins can only be edited using the Inspektor.
• Input pins
• Output pins

3. IOBox III
3.0 The Inspektor 3.1 Confi guring a set of sliders I

With the Inspektor open and the IOBox selected, let’s change some settings of the IOBox .

First let’s make our IOBox work with a spread of 8 values at once. We do this by setting the following
confi guration properties:

• Set SliceCount Mode to ‘ColsRowsPages’ (use to change variables)
• Set Columns to ‘4’

Now let’s resize the IOBox . To do this move your cursor to the bottom edge of the node on the right hand side,
your cursor should change to a resize icon. Now drag out the size of the node.

We should have 4 values shown.

3.2 Confi guring a set of sliders II
Now let’s change the visual style.

• Turn on Show Grid

• Turn off Show Value

• Turn on Show Slider

• Set Slider Behaviour to Slider

Let’s visualise the output of this. and select 4D Vector. Put this beneath your sliders and connect the
Y Value Output of your sliders to the Y Value Input of your 4D Vector IOBox .
Now try interacting with your sliders by dragging the right mouse button up and down on each slider.

We fi nd that the sliders can move between -1000 and 1000. We can change this range using the Minimum and
Maximum Values in the Inspektor .

3.3 Help patches
VVVV has a built in help mechanism for most common nodes. To open a Help Patch, select a node
(e.g. an IOBox) and press .

The IOBox help patch displays a thorough set of information about how that node works.

Let’s try another one. First create a Homography (Transform 2d) node. Then select it and press .

Try interacting with the top right IOBox using .

↓

F1

F1

page 18

VVVV / Projection / Kinect

page 19

Omniversity of Manchester

Now that we have a basic understanding of the
VVVV interface, we can start to understand how to
generate graphics.

First lets try a simple type of drawing. Let’s
create a Quad and a Renderer (EX9) . Connect them
together from Quad ’s Layer output to Renderer ’s
Layers input.

4.1 Window modes
With the Renderer selected. Try the following key
combinations:

• + - Hidden
• + - Inside the patch
• + - In a seperate window
• + - Fullscreen

You can now press + again to exit
fullscreen.

4.2 Blend mode
Let’s create a new node above Quad called Fill (EX9.RenderState)

Connect it’s output to Quad ’s Render State input.

Now create an enum IOBox above Fill. This time we’ll use another shortcut. First on the top right pin Fill

Mode to start creating a link. Then move your mouse away and do a to create a new matching IOBox.

Try selecting different fi ll modes in the IOBox (remember to use).

4. DirectX
4.0 DirectX 4.3 Group

The Renderer node has only 1 Layers input, and in VVVV, each input can only only accept 1 Link. So how do we
connect multiple objects to 1 Renderer?

For this, we use the Group (EX9) . Let’s create some nodes, from the top let’s create:

• A Quad and a Text (EX9)

• A Group (EX9) node
• A Renderer (EX9)

First connect the Group to the Renderer , then connect the Text to the Group ’s Layer 2 input pin. Now you
should be rendering the text “vvvv”. You can change this text using the 3rd input pin Text on the Text node.

Now connect the Quad to the Layer 1 input of Group . Both objects should now be drawing.

Since they are both the same colour, it is a little confusing to see. So let’s change the colour of the Quad:

1. Create a new node at the top called HSL (Color Join) .
2. Attach the Output of HSL to the Color input of Quad

3. Change the Lightness pin of HSL to around 0.2
4. Change the Hue to 0

You should now have some white text drawn on top of a red quad.

The order in which inputs are made to the Group node depicts what order the objects are drawn to the screen,
i.e. since the Quad is connected to Layer 1, we draw this object fi rst, and then the Text which is connected to
Layer 2. This means that the Text is drawn on top of the Quad, since it is drawn second, and because there is no
other depth queues in the scene.

To change the size of the quad to fi t the text, let’s make a new node above Quad called Scale (Transform) .
Connect the Transform Out of Scale to the Transform input of Quad . Now try editing the x, y and z inputs of Scale

Alt 3
2
1

Alt
Alt
Alt

Alt

Enter

Enter

page 20

VVVV / Projection / Kinect

page 21

Omniversity of Manchester

Let’s setup a Quad with a Renderer .

Now let’s add a Transform 2d above the Quad .

If we try and manipulate the input pins on the
 Transform , then we can see how we can move, scale
and rotate the object in a simple way

5.1 Vector transforms
The Transform (2d) is good to get started and for
a range of tasks, but let’s also have a look at a
different way of dealing with transforms which can
be more elegant.

Select your Renderer and Quad by dragging a
selection box around the 2 nodes. Then duplicate
these 2 nodes using + to duplicate. You
should now have a copy of the Quad and the
 Renderer . Move these further down the patch.

Now lets add a Scale (Transform Vector) and a
 Translate (Transform Vector) . Connect the Transform

Out of Translate into the Transform In of Scale and
connect the Transform Out of Scale to the Transform
input of Quad .

Now create 2 Vector 3D IOBox ’s using the double
right click quick menu.

Connect these 2 new IOBox ’s to the Scale and Transform node’s XYZ inputs.

Since your scale’s input value is set to 0,0,0 your quad has no size. Increase this to 1,1,1.

Note : A quick way of doing this is to on the IOBox ’s Input Value Y and type then .
This will set all slices in the spread to 1.

5. Transforms
5.0 Transforms 5.2 Rotation

Now let’s add another transform to the Transform stack. Let’s add a Rotate at the top in the same way we added
the Translate and Scale .

The units of rotation in VVVV are :

• 0 = no rotation
• 0.25 = 90 degrees (quarter rotation)
• 0.5 = 180 degrees (half rotation)
• 1 = 360 degrees (full rotation), back to the beginning

This normalisation of rotations may seem strange, but it becomes very useful for quickly doing maths with
rotations and imagining them yourself.

In VVVV, simple rotations are about 3 axes (corresponding the input XYZ on Rotate (Transform Vector)). These
are:

• X - Rotation about the positive X axis (the axis pointing right)
• Y - Rotation about the positive Y axis (the axis pointing up)
• Z - Rotation about the positive Z axis (the axis pointing out of the screen towards you)

For standard 2D rotations, you’ll want to spin the object in the axis pointing out of the screen.

5.3 Transform order
In computer graphics. The order in which transforms are performed is important, e.g.:

• Rotate then translate - Spin the object around the origin (the center of the object), then move it
• Translate then rotate - Move the object (hence move the center of the object), then spin the object
 around the origin (This causes the object to orbit around the center of the space).

Try to put the transforms in different orders to understand how this works. More on this later.

Ctrl

1 Enter

D

↓

page 22

VVVV / Projection / Kinect

page 23

Omniversity of Manchester

Spreads are a fundamental tool in VVVV. They are the gift that keeps on giving (metephorically, and quite
literally).

Note : For programmers: It’s similar to an Array in normal programming speak, but also very different.

• A spread is a set of data.
• An individual item within a Spread is called a Slice

• The number of Slices in a Spread is called the Spread Count or the Slice Count

• Each Slice has a position within the Spread called a Slice Index

• The fi rst Slice in the Spread has Slice Index of 0.
• If you try to access a slice index outside of the range (e.g. >= spread count or <0) then the spread
 ‘loops’.
• A Spread of Spread Count 0 is a special case called an Empty Spread

6. Spreads
6.0 Spreads

An example
A fi sh and chip shop menu has 10 items, each with a price and a description. The fi rst item on the list is
“Battered cod” with a price of 2pounds 50pence. The last item on the list is “Kimchi” at 4 pounds. Therefore we
could say the following:

• There are a spread of Values (price) and a spread of Strings (description)
• Both spreads have slice count of 10.
• At slice index 0 in the Value spread we have 2.5
• At slice index 0 in the spread of Strings we have Battered cod
• At slice index 9 in the spread of Strings we have Kimchi
• At slice index 10 in the spread of Strings we have Battered cod (we’ve looped here back to the
 beginning of the spread)
• At slice index -1 in the spread of Strings we have Kimchi (we’ve looped here back to the end of the
 spread)

6.1 GetSlice
A GetSlice (Spreads) node picks 1 or more slices out of a spread.

Let’s create a GetSlice (Spreads) now, and attach a 4D Vector IOBox to its Input and a simple IOBox to its
Output. on the bottom IOBox to give it a name.

For readability. Let’s go into the Inspektor and change some properties for both IOBox ’s. Set Value Type to
Integer and Size to 14. Also turn on Show Grid and Show SliceIndex.

Also let’s add an IOBox on the Index input of GetSlice using our middle button trick . (fi rst click on the
pin to start a connection and then to make an IOBox from the connection.

Add a I (Spreads) to the top and connect the output to the input of the 4D vector. Set the input pin To on I to 4.
This node now outputs a spread of 0, 1, 2, 3 i.e. values From 0 To 4.

Now try changing the Index to see which slice is selected by the GetSlice node.

6.2 Always repeating
So we’ve seen how the data in a spread is repeated to satisfy the slice which is being asked for. This is even
the case when we have 1 value.

We can test this with a GetSlice with a simple IOBox (Value) input.

When we run it through a GetSlice and roll the Index pin different slices, we get the same value.

Important note : Every Value, String, Colour, Enum, etc in VVVV is stored as a Spread, and therefore repeats like a Spread.

page 24

VVVV / Projection / Kinect

page 25

Omniversity of Manchester

So let’s try and visualise what happens with spreads.

We’re going to setup a simple graphical patch to use in a number of experiments. This patch will help us to
visualise some spread mechanics, but also introduces a few graphical concepts as well.

Follow these steps:

1.	 First create a Quad and a Renderer and connect them up. You should get the familiar white 		
	 square in a black box.
2.	 Now lets make a new node called FileTexture above Quad . Connect the Texture Out output of 		
 FileTexture to the Texture input of Quad.								 	
	 The FileTexture node loads in an image file, and creates a Texture which you can apply to your 		
	 graphical objects.											
	 Textures are stored on the graphics card, and can be used in all sorts of ways to manipulate your 	
	 objects with image data (e.g. image maps, height maps, bump maps, etc).
3.	 	 on the Filename input of FileTexture and select an image from your own computer. You should 	
	 now see that image applied to the quad.
4.	 Now let’s load a specific texture. We go to the VVVV folder where you have it installed. We go to 	
	 the ‘girlpower’ folder. Then we go to the ‘images’ folder (vvvv/girlpower/images). Now select the 	
	 file “ring thin.bmp”. We should now be drawing a circle to the screen. If the Renderer is square, 	
	 the circle will be square. But if the Renderer is squashed, so will the circle be.
5.	 To straighten the circle, we need to counteract the Aspect Ratio of the Renderer . We do this with 	
	 some simple maths. Create a / (Value) node (this node divides numers. i.e. 4/2 = 2). 			
	 Attach the 2 inputs of the / to the Width and Height output pins of the Renderer respectively. 		
	 Create an IOBox and attach it to the IOBox ’s output to visualise the output. This number 		
	 represents the aspect ratio. Go into Inspektor and set the Descriptive Name of the IOBox to Aspect	
	 Ratio. 														
	 Now add a Scale (Transform) (not vector version!) above your Quad . Connect to your Quad ’s 		
	 Transform pin. Connect the output of your Aspect Ratio to the Y input of Scale . The aspect ratio 	
	 should now be fixed for your quad, regardless of the Renderer ’s aspect ratio.				
	 Because you now have a link going upwards in the graph, it looks a little messy. Feel free to 		
	 select it and tidy it up using either Ctrl+Y to curve it, and/or Ctrl+H to ‘hide’ it.
6.	 Scale down the quad using a UniformScale (Transform) node. Attach this to the input of your Scale 	
	 node and reduce the XYZ input to 0.1. 									
	 Remember you can edit the value both by on 	 the pin and then typing a 	
	 or on the pin and move the mouse up/down.
7.	 Create a Translate (Transform) node (again, not the vector version!). and attach that to the		
	 UniformScale ’s input

Ok before going any further. Take some time to figure out what’s happening. This are some very common
VVVV fundamentals here which are worth understanding (Transforms, Layer, Texture, Maths).

Notice how everthing is wired up for 1 object. There’s 1 aspect ratio correcting scale, 1 uniform scale, 1 texture,
1 quad.

Now let’s step it up! Create a LinearSpread node above the Translate and attach the Output to Translate ’s X
input. Now check the top right input pin of LinearSpread , Spread Count. Let’s increase this value.

As you see you get lots of circles renderered to the screen. Check the Output of LinearSpread by rolling your
mouse over the output (you dont need to click). It might look something like this:

Output: (3) -0.3333~

This means there are 3 slices in the spread, and the first slice has a Value of approximately -0.3333 (the ~
denotes approximate).

6.4 - Olympics 2012?
Ok. Let’s make a copy.

1.	 Select that section of the patch we just made.
2.	 Press + to duplicate. Dont press anything else.
3.	 The bits you’ve duplicated are all mixed up with the old bits, but your new bits are all selected.
4.	 Use the 			 key on your keyboard to move the nodes down within the patch. 			
	 To do this quicker, use + . Do this until you’ve moved the new nodes into a clear 	
	 section of the patch

Let’s get rid of the background. Delete RetroColors by clicking on it and then pressing 	 .
Right click on the Background Color pin to reset it to black.

Let’s make the rings bigger. Set the UniformSpread to 0.4. This is a quick way of saying ‘set the parameter of
UniformSpread (in this case XYZ)) to value 0.4’.

Create a new LinearSpread and connect it to Translate ’s Y input. Set the Spread Count of the 2 LinearSpread ’s to
5 and 2 respectively.

Adjust the Width pins of the LinearSpread ’s until you get the olympic rings.

For good measure, add some colour to the rings by either using a RetroColors with an I (Spreads) on the
IndexHSL (Color Join) with a LinearSpread on the Hue input pin. Also set the Draw Mode of the Blend node to
ColorAsAlphaBlend.

6.3 A visual spread experiment

0 . 1 Enter

DCtrl

Down
Shift Down

Delete

↓

page 26

VVVV / Projection / Kinect

page 27

Omniversity of Manchester

If we have too many circles, they will start to overlap. Since the textures have an opaque black background,
they will interfere with each other. We can see that the circles are opaque by changing the background colour
of the Renderer .

To change the background colour of the Renderer , create a RetroColors (Color) and connect its Output to the
Background Color input pin on the Renderer . Select different colours by changing the Index input of RetroColors
and/or changing to a different games console colourset using the Mode pin.

On the right hand input of Blend we see < That was fun, but anyway, we can definitely see that the
background of the quads are black. Let’s change the Blend Mode of the quads, (Photoshop users will be familiar
with this idea).

Create a Blend (EX9.RenderState) above Quad and attach the output of Blend to the Render State input of Quad .
Set the Draw Mode of Blend to Add.

Now when the quads are drawn, their colour is ‘added’ to whatever is behind them, i.e. since black is 0 and a +
0 = a, black has no effect when the Draw Mode is set to Add.

6.5 Tidying the blend mode

page 28

VVVV / Projection / Kinect

page 29

Omniversity of Manchester

There are an infi nite number of ways to animate things in VVVV. Here are some obvious ones:

• Damping between 2 states
• Using Timeliner

• Using LFO

7. Animation
7.0 Introduction to animation 7.1 Damper

A simple form of animation is ‘damping’ between 2 states. Examples of nodes which can cause this type of
animation are:

• Damper

• Decay

• DeNiro (so called because it acts like a ‘taxi driver’)
• Newton

These nodes tend to take an Input which changes, and give an Output which moves smoothly. The speed and
type of this movement depends on the type of the node, and the parameters of that node.

Let’s try the following:

1. Create a Damper (Animation) .
2. Create 2 IOBox ’s around the Damper . One attached to its Input and one attached to its Output

3. Create a Toggle IOBox using the shortcut menu, and attach its output to the input of the top
 IOBox

Now try toggling the IOBox on and off. You will notice the Input jumps sharply between values, whilst the
output moves smoothly.

7.2 Decay
Try this agan, but with a Decay node instead of a Damper node.

Set the Decay input pin of Decay to 1 second. Now when you make the value high it jumps instantly. But
when you make it low again it takes 1 second to return back to 0.

7.3 LFO driven animation
Firstly let’s grab the rendering patch we had from last time. Copy it + there,
and paste it + here. Set the Spread Count to 3.

To save some space. I’ve deleted the Aspect Ratio IOBox and connected the / directly to the Scale ’s Y input.
Also I’ve scaled down the size of the Renderer in my patch.

First let’s manually ‘roll’ the Phase input of the LinearSpread . Just put your mouse over it hold the right
mouse down and drag up/down.

Now create a new node LFO (Animation) and add 2 IOBox s to the Output and Cycles output pins on it. Set the
Period input on LFO to 3 seconds. Notice how the Output and Cycles are affected.

Now connect the Output of LFO to the Phase input of LinearSpread . You should see the circles marching in a
line.

Ctrl
Ctrl

C
V

page 30

VVVV / Projection / Kinect

page 31

Omniversity of Manchester

Now make a copy of that section of the patch, delete the LFO with its IOBox ’s. The Phase of the LinearSpread
will now keep the last value sent to it.

Create a RandomSpread (Spreads) node above Translate , and attach the Output of RandomSpread to the Y input
of Translate and set the Spread Count to 3.

RandomSpread is now outputting a Spread of 3 values, each of which should be random (if you want to get
nerdy, pseudo-random).

If we roll the value of the Random Seed input pin of RandomSpread , we’ll get a different set of random numbers.

Create a new LFO and connect the Cycles output to the Random Seed input. Now periodically the circles will
jump to new positions.

Aha! We know how to make things move smoothly instead of jumping dont we? Let’s stick a Damper in the
path between RandomSpread and Translate . Now they should move smoothly!

To improve this, let’s try a few things:

•	 Change the Width of the RandomSpread to 2. This means that the range of values output will be 	
	 between -1 and +1 which is the range of Y values that fit inside the Renderer. The range is defined 	
	 by the Width and the Input (i.e. the center) of RandomSpread

•	 Try increasing the Filter Time of Damper to make the circles accelerate more slowly.
•	 Try changing the Period of the LFO . Note that if the Period is too short (i.e. quick), then the input to 	
	 the Damper might move too quickly for the output to ever catch up.
•	 Try increasing the Spread Count on RandomSpread

•	 Try chaning the Spread Count and Width of the LinearSpread

7.5 Timeliner
The Timeliner node is a fantastic tool for advanced animations. Check out the help patch for it by creating the
node and pressing whilst it is selected.

7.4 RandomSpread animations

F1

page 32

VVVV / Projection / Kinect

page 33

Omniversity of Manchester

A Vector is represented by a Spread. A Spread of Vectors is represented also by a Spread.

A Spread with Spread Count 6 could either be a Spread of 3 2D Vectors, or a Spread of 2 3D Vectors. VVVV is
totally agnostic about this. It just sees numbers.

Let’s try this out:

1. Make 2 Vector 2D IOBox ’s.
2. Make a Cons (Spreads) node
3. Make a Vector 4D IOBox

Connect the 2 2D IOBox ’s to the 2 inputs of Cons . And connect the 4D IOBox to the output of Cons .

If we edit the values in the top boxes, we can see the values change in the bottom box. The 2 2D vectors
become a 4D vector.

The Cons node glues spreads together. It is short for Concatenate

8. Spreads II
8.0 Vectors 8.1 Vectors 2

Now try this situation:

1. 2 3D Vector IOBox ’s attached to the inputs of a a Vector (2D Join)

2. Create a Vector (3D split) and connect the XY output of Vector (2D Join) to the XYZ input of
 Vector (3D Split) .
3. Add 3 Vector 2D IOBox ’s to the 3 outputs of Vector (3D split)

Here we must embrace that the numbers are free to lose their identity at any point. We’ve input 2 3D vectors,
which arrive at the Vector (2D Join) . At this point all the values on the left become X values, and all the values
on the right become Y values. Therefore the identity of the numbers become 3 sets of 2D vectors or in VVVV
speak (and specifi cally, what comes on the output of that node) A Spread of 2D Vectors with Spread
Count 3.

In this case, the Vector 3D IOBox ’s simply become convenient input methods for spreads of 3 values.

Then anyway, we lose our A Spread of 2D Vectors with Spread Count 3 identity again, by passing the
spread into the Vector (3D split) node. At this point the spread of 6 values is interpreted as A Spread of 3D
Vectors with Spread Count 2.

This is then split out onto the output IOBox ’s

8.2 Vectors 3
OK. Let’s keep up :)

Now try:

1. 1 3D Vector IOBox attached to the X input of a Vector (2D Join)

2. 1 ordinary IOBox attached to the Y input of the node>Vector (2D Join)
3. Create a Vector (2D split) and connect the XY output of Vector (2D Join) to the XY input of
 Vector (2D Split) .
4. Add 2 Vector 3D IOBox ’s to the X and Y outputs of Vector (3D Split)

Here we have a spread of 3 2D vectors. And we see that the Y value is repeated. We can visualise this more by:

1. Create an IOBox

2. Goto the Inspektor +
3. Set the Rows of the IOBox to 6
4. Connect the XY output of Vector (2D Join) to the input of the new IOBox

Notice how the Y value Interleaves the X values in the Spread.

Ctrl I

page 34

VVVV / Projection / Kinect

page 35

Omniversity of Manchester

Let’s grab our rings patch from before.

Set the Spread Count of the LinearSpread to 4. Now duplicate the LinearSpread and attach the second one to the
Y input of Translate

Ok we’ve got 2 spreads going in, each of Spread Count 4, and we’ve got 4 rings being rendered. But what if we
want a grid of 4x4 rings? Then we use the Cross node!

Attach the 2 LinearSpread ’s to the X In and Y In inputs of the Cross node respectively.

Connect the X Out and Y Out output pins of Cross to the X and Y inputs of Translate .

You should now have 16 rings instead of 4.

You may also notice that it’s possible to use the same LinearSpread for both inputs on the Cross as they are
giving identical output.

Otherwise you can make a different grid (e.g. 6x4).

8.4 CircularSpread
Now to keep the patch simple, we will use the GDI (Renderer) :

Create a Renderer (GDI) and use Alt+3 to put it into the patch (rather than a seperate window).
Create a Point (GDI) and attach its output pin to the Layers input pin of Renderer

Now we should have a small cross rendered the the screen. We can change this graphic by changing the Type
pin on the Point node.

Now create a CircularSpread node above the Point , and attach the Output X and Output Y pins of CircularSpread
to the X and Y inputs of Points respectively.

Increase the Spread Count on the CircularSpread (e.g. to 10).

You should now have a circle of circles.

8.3 Cross 8.5 And now animate
Add an LFO to the Phase pin of CircularSpread .

Reduce the Period of the LFO to 3 seconds.

page 36

VVVV / Projection / Kinect

page 37

Omniversity of Manchester

Within the 3D world of computer graphics, there are many spaces. The most general ones are:

• Object - The coordinates within the object
• World - The coordinates with the world containing all the objects. When we transformed our quads
 before, we were transforming them in the world space. This is a Euclidean coordinate system, i.e.
 right angles are preserved
• View - The World transformed from a particular viewpoint’s position (trasforming a position is
 commonly called a translation) and rotation. This space is still Euclidean
• Projection - This is the coordinate system of the camera onto the scene. When a perspective transform
 is applied to the scene, then this space is non-Euclidean, and is instead Projective

Alternatively we can also think of Projection Space (especially when projection mapping) as the coordinate
system of the projector. This then becomes the coordinate system which has to match up with real world
objects that we are projecting onto

9. Transforms II
9.0 Object, World, View, Projection 9.1 3D Camera

It may be diffi cult to admit, but much of our lives are 2D. Our eyes see fundamentally in 2D, and its only by
having a pair of them that we get a sense of 3D. But it is only a sense, and in truth, we are always limited to
seeing 2D projections of things. This is generally true in computer graphics, especially when displayed on a
monitor.

So how do we see something in 3D? Well, we get a camera that we can move!

Create:

1. A Renderer (EX9) and put it into the patch using +
2. An AxisAndGrid (DX9) . Connect this to the Renderer

3. A Camera (Transform Softimage) .

Now hook up the camera.

Connect the View output of Camera (2nd output) to the View input of Renderer .
Do the same for Projection

Now we can see the axis and grid from a perspective viewpoint.

You can use the following controls to manipulate the camera:

• + - Orbit

• + - Dolly (fast)

• + - Dolly (slow)

• + - Move

• + - Zoom

• Hold to reset the view

Be careful not to destroy your patch with all those mouse actions!

Alt 2

O

P

P

Z

Z

R

↓

↓

↓

↓

↓

page 38

VVVV / Projection / Kinect

page 39

Omniversity of Manchester

Bits of code that you want to use all the time can be wrapped up in packages called Modules.

Modules are in fact simply subpatches that you use quite often. This Camera node is in fact a module
made by a VVVV user. To see inside it, on it.

Press + when you’re done to hide the patch.

9.3 3D vector transforms
Create a copy of the patch we just made, and insert a Group (EX9) between the AxisAndGrid and your Renderer

Create a Sphere (DX9) and attach it to the Layer 2 input of Group .

Add a Translate (Transform Vector) and attach the output to Sphere ’s Transform input.

Create a RandomSpread and attach its Output to the Translate ’s XYZ input.

Add an IOBox to RandomSpread ’s Spread Count input.

Give that IOBox a value of 120. This means you have 40 3D vectors, and therefore 40 spheres.

To make them look less blocky. Increase the Resolution X and Resolution Y pins on the Sphere node. Be careful
not to go too high, especially on older graphics cards!

Now try to give the spheres some colour, and make them move.

Alt 3

9.2 Modules

page 40

VVVV / Projection / Kinect

page 41

Omniversity of Manchester

The Renderer (EX9) has plenty of settings hidden away in the Inspektor . Here are some of the ones you
defi nitely want to become familiar with:

• Fullscreen Depthbuffer - For 3D scenes you generall want to turn this ‘on’, i.e. choose a setting other
 than NONE. The Depth Buffer is what that graphics card uses to detect when objects are in front of
 each other, so it knows how to draw them properly
• Fullscreen Dimensions - When you make your renderer fullscreen, this is the resolution that it will use.
 The renderer will become fullscreen on whatever screen it is on at that time, i.e. if you want it to
 come up on the second screen, you must drag the renderer window to there before going fullscreen.
 Also by doing this, you will have the correct list of resolutions for that screen
• Fullscreen Antialiasing - This smooths the edges of objects, generally turn this on to make graphics look
 detailed and smooth. Depending on your graphics card different options will be available.
• Windowed Depthbuffer - Same as Fullscreen Depthbuffer, but this option applies instead when the
 renderer is not fullscreen
• Windowed Antialiasing - Same as above

10. DirectX II
10.0 Quality settings

The most important thing most of the time is to make sure to turn on Antialiasing and Depthbuffer.
To demonstrate this, I’ve created 3 renderers at the side which share a common scene and a common camera.
They each have different settings for Windowed Antialiasing and Windowed Depthbuffer.

WARNING: The Inspektor locked inside this patch will block you opening up another Inspektor . But if you
turn off the Attached button, then it will start acting like a normal Inspektor (albeit inside the patch rather
than in a window).

10.1 Quality settings demo
Here we demonstrate 3 Renderer s with different quality settings so that you can compare and identify the
differences.

Feel free to patch this out for yourself, but for the sake of this tutorial, we wont go through it step by step.

Another new bit is the GourandDirectional shader (more on that in the next tutorial!).

10.2 Multiple renderers
Here we’re also demonstraing something that VVVV does effortlessly:

Rendering the same objects to multiple Renderer ’s.

In fact, with VVVV you can mix and match Renderer ’s however you like. It’s a real strength of the platform.
And something that isn’t properly available on any other hardware accelerated platform for media arts use.

10.3 Perfmeter
The PerfMeter (Debug) node gives you vital information about how your computer is performing and what is
slowing it down.

The big number is the Framerate which is measured in Frames Per Second (fps). You generally want this to be the
same as your Refresh rate (commonly 60Hz, therefore 60fps is best).

The running graph is the history of your framerate, and the other graphs give you more detailed information
as to what is taking up your processing time.

An ideal situation is generally a nice fl at line at 60fps.

page 42

VVVV / Projection / Kinect

page 43

Omniversity of Manchester

A Shader is an advanced piece of graphics programming which runs on the graphics card. It lets a developer
specify in detail how an object should be rendererd to the screen.

In VVVV, shaders are commonly called Effects, and are represented by a fi le with extension .fx.

The idea of modern shaders was created (afaik) by Pixar as part of their RenderMan rendering package
in the late 1980’s. Their shaders ran on the CPU and took a long time to calculate for a scene. With the
introduction of new graphics cards (Around the time the GeForce FX was released), it became possible to write
programs that ran directly on the GPU (Graphics Processing Unit).

The GPU is capable of calculating lots of small programs in parallel (sometimes hundreds of programs
simultanaously). These programs are called shaders and be used to:

• Geometry shader - Generate geometry
• Tesselation shader - Increase an object’s detail
• Vertex shader - Manipulate vertices
• Pixel shader or Fragment shader - Control pixel by pixel rendering

11. Shaders
11.0 What is a shader? 11.1 Basic shader usage

In VVVV, you apply a Effect to a Mesh. The shader may accept 1 or more Textures, and will always accept at least
1 Transform (this is the World transform which is accepted on the generically named Transform pin).

The most basic shader packaged with VVVV is called Constant (EX9.Effect) . Create one of these now and attach
it to a Renderer .

The Renderer will remain black, as there is no Mesh attached to the shader. There are a number of common
meshes built into VVVV:

• Box
• Sphere
• Grid
• Teapot
• Cylinder
• Torus

You can list the availble meshes by searching for EX9.Geometry in the NodeBrowser .
Let’s attach a Cylinder (EX9.Geometry) to the Mesh of the Constant shader node.

Because we are looking side on, we see a square. Let’s add a Camera , and Group in an AxisAndGrid (DX9) to get
some context.

Turn on the Antialiasing and Depth Bufffer quality options.

We should see a very ‘fl at’ looking cylinder within the scene.

11.2 Other shaders
There’s lots of great shaders to make smooth results. Some examples of these are:

• GourandDirectional
• GourandPoint
• PhongDirectional
• PhongPoint

And there are many online in the Contributions area of the VVVV website.

Let’s have a look at some now.

Copy the patch you just made with the earth cylinder and delete the texture transform (LFO and Translate).

Double click on the Constant node to bring up the NodeBrowser . Select PhongPoint . You will notice that
this node has many more input pins, to allow you to change many properties regarding how the shader is
drawn.

page 44

VVVV / Projection / Kinect

page 45

Omniversity of Manchester

Use the same method to switch the Cylinder mesh with a Sphere (EX9.Geometry) .

Create a Translate (Transform Vector) and attach it to the Transform of the shader. Attach a RandomSpread to the
XYZ input of the Translate , and set the SpreadCount to 30 to create 10 3D vectors, i.e. 10 spheres. Set the Width
of the RandomSpread to 5.

Now let’s animate using a DeNiro and LFO like we did before.

11.2 Texture transforms
Let’s add a texture to the Cylinder using FileTexture . Select the Earth 512x512.jpg image from within the
vvvv/girlpower/images folder.

Now add a Translate (Transform) and connect it to the Texture Transform input pin on the Constant shader. This
allows you to move the position of the texture on the object. Try rolling the X input value on Translate .

Let’s add an LFO and connect the Output to the X pin of the Translate .

11.3 Lighting
Notice that one of the input pins of the PhongPoint is called Light Position XYZ. This pin accepts a 3D position for
the light.

Create a 3D Vector IOBox and connect it to this input pin. Now the light should be at the origin (0,0,0).

This kind of light source is a point light source (i.e. a light at a particular 3D position within the scene). If you
want the objects to react to a directional light source, then use PhongDirectional or GourandDirectional instead of
the point versions.

11.4 HLSL
Shaders are written in a language called HLSL. To see this code, on the PhongPoint . This brings up the Code

Editor.

As you get more advanced with VVVV, you can try editing these shaders yourself.

If you want to learn more about shaders, I suggest looking at http://http.developer.nvidia.com/CgTutorial/
cg_tutorial_chapter01.html (I’ve got that book and that’s how I learnt!).

GPU’s have become much more powerful than CPU’s (50-100x more powerful), and can therefore perform
much more calculations than a CPU can within the time of 1 frame (1/60th of a second).

Many developers are therefore exploiting GPU’s to perform calculations. One example of this is the GPU
Particles library in the contributions section of the website, which allows you to manipulate and render
1000’s of particles at the same time by harnessing the power of the GPU.

11.5 GPU calculations

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html

page 46

VVVV / Projection / Kinect

page 47

Omniversity of Manchester

Ok, presuming there’s a microphone on the computer you’re using, then we can measure the sound in the
environment. This could be music, speech or whatever.

Let’s create an AudioIn node, and connect it to an RMS node. Change the Enabled pin on AudioIn to 1. Create a
2D Vector IOBox and attach it to the output of RMS . The numbers should show the audio level.

The 2 numbers reperesent the left and right channels. Create a Mean (Spectral) node to average out these 2
values. Attach the output of the IOBox to the Mean ’s input.

Put a normal IOBox on the output. Let’s grab the ‘Audi’ patch (the one that renders rings) from our previous
Spreads tutorial.

12. Audio response
12.0 RMS 12.1 Amplifi cation

This value is quite low, so let’s feed it into a * (Value) node and put another IOBox on the other input of the * .
Set the value of the second IOBox to something like 20.

Put an IOBox on the output of the * . Adjust the amplifi cation factor (the number in the second IOBox until
the values start varying between 0 and 1 when sound is being detected.

12.2 Queue
If we want to keep a history of these values, we can use the Queue (Spreads) node. Let’s create one now.

Connect the sound intensity to the Queue ’s Input. Set the Frame Count to 100. Create a Toggle IOBox and set
it to high (i.e. 1) and connect the output to Insert on the Queue . Now it will keep a history of the last 20 sound
intensity values. These are output in a spread of Spread Count 20 on the bottom of Queue .

Copy in the ‘Audi’ patch which rendered the rings from tutorial 6. Spreads.

Connect the Output of the Queue to the Y input on the Translate node. and set the LinearSpread on the
 Translate ’s X pin to have Spread Count20 and Width 2.

You should now have a graph of the past 20 values of sound amplitude.

12.3 FFT
The FFT gives us a detailed view of what intensity of each frequency is being heard by the computer.

To set it up, it’s very similar to RMS . We create an AudioIn , set Enabled to 1, and connect it to an FFT node.

To visualise its output, let’s create an IOBox and attach it to the FFT L output of FFT . This gives 256
frequencies within the left channel. Low indexes in the spread are bass, high indices are treble. Since we have
256 values, it’s hard to visualise it as numbers in an IOBox .

12.4 Visualising 256 slices in an IOBox
Go to the Inspektor and set the following properties for the IOBox

1. Set the Columns to 256
2. Set Show Value to false
3. Set Show Connections to true
4. Set the Maximum to 1
5. Set the Minimum to 0

If the values are too small to see, then add an amplifi cation factor between

page 48

VVVV / Projection / Kinect

Try to recreate this patch.

Some notes:

•	 To fix the Aspect Ratio, we’re using a Scale connected to the View transform pin on the Renderer 	
	 rather than on the object. This applies the transform to the whole scene
•	 Resample is used to resize the spread from count 256 to 16. The Mode is set to Point so that the 	
	 values are resampled proeprly. This is like resamping an image in Photoshop
•	 A segment is an object that renders a circle or an arc. By Setting the Inner Radius to 0.95 we get a 	
	 ring.

12.5 Exercise

